Rule Extraction for Dynamic Hand Gesture Recognition using a Modified FMM Neural Network
نویسندگان
چکیده
In this paper, we present a rule extraction method using a modified fuzzy min-max neural network for dynamic hand gesture recognition. We introduce a feature relevance measure for the pattern classification based on FMM neural networks. During the learning process, the feature distribution information is utilized to compensate the hyperbox distortion which may be caused by eliminating the overlapping area of hyperboxes in the contraction process. We define a feature saliency measure that represents a degree of relevance of a feature in a classification problem. From the measure, we can classify excitatory features and the inhibitory features which can be used for the rule generation process.
منابع مشابه
A Hyperbox-Based Neural network for Dynamic Hand Gesture Recognition
In this paper, a rule extraction method using a modified fuzzy minmax neural network for dynamic hand gesture recognition is introduced. We present a feature relevance measure for the pattern classification based on FMM neural networks. During the learning process, the feature distribution information is utilized to compensate the hyperbox distortion which may be caused by eliminating the overl...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملHand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کاملStatic hand gesture recognition using neural networks
This paper presents a novel technique for hand gesture recognition through human–computer interaction based on shape analysis. The main objective of this effort is to explore the utility of a neural network-based approach to the recognition of the hand gestures. A unique multi-layer perception of neural network is built for classification by using backpropagation learning algorithm. The goal of...
متن کاملEMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013